Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Bis(tetramethylammonium) hexamolybdate hydrate, $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]_{2^{-}}$
 [$\mathrm{Mo}_{\mathbf{6}} \mathrm{O}_{\mathbf{1 9}}$] $\cdot \mathrm{H}_{\mathbf{2}} \mathrm{O}$

Neven Strukan et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.
(C) 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Crystal Structure
Communications
ISSN 0108-2701

Bis(tetramethylammonium) hexamolybdate hydrate, $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]_{2^{-}}$ [$\left.\mathrm{Mo}_{6} \mathrm{O}_{19}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Neven Strukan, ${ }^{\text {a* }}$ Marina Cindrić, ${ }^{\text {a }}$ Maja Devčić, ${ }^{\text {a }}$ Gerald Giester ${ }^{\text {b }}$ and Boris Kamenar ${ }^{\text {a }}$
${ }^{\text {a Laboratory of General and Inorganic Chemistry, Faculty of Science, University of }}$ Zagreb, Ul. kralja Zvonimira 8, PO Box 153, HR-10000 Zagreb, Croatia, and
blnstitut for Mineralogy and Crystallography, University of Vienna, Althannstrasse 14, A-1090 Wien, Austria
Correspondence e-mail: nstrukan@chem.pmf.hr

Received 20 March 2000
Accepted 23 May 2000

Data validation number: IUC0000143
The crystal and molecular structure of the title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)_{2}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, has been determined from X-ray diffraction data. The polyoxoanion $\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right]^{2-}$ is built up from six distorted MoO_{6} octahedra sharing common edges and one common vertex at the central O atom, and has crystallographic $m 3 m\left(\mathrm{O}_{h}\right)$ symmetry. The cation has crystallographic $\overline{4} 3 m$ symmetry.

Comment

In the attempt to synthetize a polyoxomolybdovanadate coordinated with glycine, the tetramethylammonium salt of the hexamolybdate anion has been isolated and structurally characterized. The crystal structure of the title compound, (I), is built up of tetramethylammonium cations, $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]^{+}$, hexamolybdate anions, $\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right]^{2-}$, having a well known Lindquist-type of structure (Lindquist, 1953), and water molecules. Each Mo atom of the polyanion is coordinated by six O atoms (one terminal O_{b}, one central O_{c} and four bridging O_{b}) in a distorted octahedral arrangement, due to the displacement of Mo atoms toward the terminal O_{t} atoms. The six MoO_{6} octahedra share a common vertex at the central O_{c} and also each octahedron shares four edges with adjacent octahedra. Bond distances and angles within the $\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right]^{2-}$ anion are close to those already observed, for example, in compounds with tetrabutylammonium (Dahlstrom et al., 1982; Rheingold et al., 1992) and tetraphenylarsonium (Clegg et al., 1982) cations, or in the complexes with 18 -crown- 6 ethers and potassium (Nagano \& Sasaki, 1979) or oxonium (Shoemaker et al., 1986) cations.

(I)

Experimental

A mixture of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NI}(0.67 \mathrm{~g}), \mathrm{MoO}_{3}(0.50 \mathrm{~g}), \mathrm{V}_{2} \mathrm{O}_{5}(0.20 \mathrm{~g})$ and glycine $(0.50 \mathrm{~g})$ was dissolved in water $(30 \mathrm{ml})$ and heated at reflux for 3 h . The undissolved solid (0.45 g) was filtered off and the resulting green solution $(\mathrm{pH}=3)$ was left at room temperature. After 24 h , the solution changed colour to orange, and transparent orange crystals of the title complex were isolated.

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)_{2}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad$ Mo $K \alpha$ radiation
$M_{r}=1045.93$
Cubic, Fm $\overline{3} m$
$a=13.824$ (5) A
$V=2641.8(17) \AA^{3}$
$Z=4$
$D_{x}=2.630 \mathrm{Mg} \mathrm{m}^{-3}$
Cell parameters: using all available data
$\mu=2.846 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, orange
$0.24 \times 0.22 \times 0.22 \mathrm{~mm}$
Data collection
Nonius KappaCCD diffractometer
$R_{\text {int }}=0.020$
$2^{\circ} \varphi$ and ω scans
702 measured reflections
$\theta_{\text {max }}=34.28^{\circ}$
320 independent reflections
$h=-21 \rightarrow 21$
$k=-15 \rightarrow 15$
273 reflections with $I>2 \sigma(I)$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0238 P)^{2}\right.$
$R(F)=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.194$
320 reflections
20 parameters
H -atom parameters not refined
$+6.8529 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.63 \mathrm{e}^{\text {A }}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient:
$8.0(18) \times 10^{-4}$
Table 1
Selected geometric parameters (\AA).

Mo1-O1	$1.679(4)$	Mo1-O3	
Mo1i $^{\text {ii }}$	$1.9212(15)$		
Mo1-O3 $^{\text {ii }}$	$1.9212(15)$	Mo1-O3	$1.9212(15)$

Symmetry codes: (i) z, x, y; (ii) $-z,-x, y$; (iii) $-x,-y, z$.
Due to the symmetry of tetramethylammonium cation $(\overline{4} 3 \mathrm{~m})$, methyl H atoms were generated using the HFIX147 command. A peak corresponding to a water H atom was located in the difference density map at special position (e) of the space group $F m \overline{3} m$ and was included in structure-factor calculations. However, due to the site symmetry and water-molecule geometry, it must be disordered around six equivalent positions.

Data collection, cell refinement and data reduction: DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure and prepare material for publication: SHELXL97 (Sheldrick, 1997).

This work was supported by the Ministry of Science and Technology of the Republic of Croatia (project No. 119407).

References

Clegg, W., Sheldrick, G. M., Garner, C. D. \& Walton, I. B. (1982). Acta Cryst. B38, 2906-2909.

Dahlstrom, P., Zubieta, J., Neaves, B. \& Dilworth, J. R. (1982). Cryst. Struct. Commun. 11, 463-469.
Lindquist, I. (1953). Ark. Kemi. 5, 247-250.
Nagano, O. \& Sasaki, Y. (1979). Acta Cryst. B35, 2387-2389.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. London: Academic Press.
Rheingold, A. L., White, C. B., Haggerty, B. S. \& Maatta, E. A. (1992). Acta Cryst. C49, 756-758.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shoemaker, C. B., McAfee, L. V., Shoemaker, D. P. \& DeKock, C. W. (1986). Acta Cryst. C42, 1310-1313.

